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ABSTRACT:

Automatic reconfiguration is a new challenge to manage complex distributed systems. Current
approaches to specify such systems are not able to capture behavioral aspects to prevent the service deg-
radation. This article introduces three elements which are relevant for the automation of configuration
management: (i) refined standardized state change models with particular states imposed by the need of
prevention (usage and operational states), or the need of creation, migration, and deletion of managed
objects (administrative state), (ii) the notion of actual availability which allows us to identify predictive
reconfiguration activities based on the lifecycle history of a managed object, and (iii) the notion of
required environment for a managed object, distinguishing the functional, operational, and existential
environment of a managed object. This characterization of the environment is defined according to the
new state change models and environmental conditions proposed in this article. Examples of using our
proposal in reconfiguration policies are presented.

1. INTRODUCTION

A management system is an application which consists of specialized managing objects playing different
management roles, such as monitoring, fault detection, or reconfiguration. Automatic reconfiguration and
automatic reconfiguration management require new mechanisms, techniques, and approaches to collect,
interpret, and re-act in an appropriate manner to reconfiguration needs. The main purpose of this article is
threefold: (1) to refine the existing state change models, (2) to propose a dynamic quantitative evaluation
of a operational behavior of a managed object, and (3) to identify environmental constraints related to the
administrative and operational state change models. The goal is to offer accurate and relevant informa-
tion, which can be used within management policies which are implemented as the functional behavior of
managing objects. This allows an active and automatic management of distributed systems. A manage-
ment system can apply reactive policies, as a consequence of an event occurring within a managed object,
or pro-active policies, commonly using prediction mechanisms based on the behavioral history of a man-
aged object. Reactive and pro-active policies are used to prevent the degradation of the QoS (Quality of
Service) or to ensure a graceful degradation of QoS. The result of these policies is an enhancement of the
configuration of a system that can be performed by either (1) the selection of the best servers with respect
to the clients' requests, or (2) the creation, migration, isolation, and deletion of managed objects. Our pro-
posal can be summarized as follows.

State change models: Different classes of managed objects have a variety of state attributes. A change
of at least one state attribute value determines a state change for the concerned component. Automation
and distribution need some refinements of existing state change models, in order to combine state
changes and alarms. For example, if the operational state is enabled, different alarms can occur. Accord-
ing to their relevance, we classify them in three categories, i.e. warning, critical or outstanding. Each
event category enriches the semantics of the operational state, giving a more accurate operational view on
a component. For those managed objects portraying a maximum capability, the capability range is thresh-
olded between idle to busy, to accurately capture the loading. Consequently, several counter-based events
concerning the usage state are evaluated with respect to two thresholds, which lead to a warning or criti-
cal usage state. We define the relation is-better-than, which creates an ordering between system compo-
nents offering identical or similar services.

actual availability: Different alarms, e.g. critical alarms, could predict a future degradation. Based on
the last notification (state change or alarm), the management system can prevent such a degradation. We
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propose the notion of actual availability and a formula to compute it. This allows us to identify conditions
for predictive reconfiguration activities, based on the lifecycle history of a managed object. A combination
of new state models and the actual availability allows us to define the notion of health of a managed object,
as a unified measure on the quality of the managed object behavior. Values of the actual availability, which
is defined as the fraction of time when a component has been enabled since its initialization, can be stored
and interpreted within time series models. These models are based on historical actual availability data,
and allow to a management system to extrapolate future behavior or identify behavioural event patterns.

Required environment: Based on notifications (state changes or alarms) or measurements (actual avail-
ability), a management system can predict a local degradation. Consequently, in order to prevent this deg-
radation or to enhance the QoS, a manager can apply reconfiguration actions, such as the substitution,
migration, isolation, or re-initialization of managed objects. These actions may include the creation, dele-
tion, or re-installation of managed objects. All these actions are subject of environmental constraints, i.e.
existential or functional constraints. The set of objects which must be available before the creation of an
object constitutes the existential environment of this object. Another set may act as a pre-condition of the
enabled operational state. Each reconfiguration management activity must verify that the constraints of the
required environment are satisfied. Consequently, we introduce a package containing specific attributes
related to the required environment.

The structure of the paper is as follows. We focus in Section 2 on state changes and notifications. Sec-
tion 3 defines different kinds of required environments, according to the state change models. In Section
4, the actual availability of a managed object is defined. Section 5 presents several management policies
using our proposal. The conclusion summarizes our proposal.

2. STATE CHANGE MODELS

Internet [1], OSI Management [2], and TTNA [3] have proposed distinct state change models. Manage-
ment aspects are separately represented in Internet and OSI Management. In the Internet approach the
value space is neither finite nor standardized, while in OSI Management, state change models are stan-
dardized, but not sufficiently refined to express service degradation. Additionally, the administrative state
value space {locked, unlocked, and shutting-down} allows to automatically reconfigure clients and serv-
ers, but does not offer accurate information on configuration aspects, hi TINA, management changes are
embedded in functional changes, i.e. there is no separation between functional and management behav-
iors.

2.1. Operational state change model

Operational state changes (enabled/disabled) are internally decided by a system resource. In many cases,
the state enabled does not accurately represent the real state of a component. In order to capture the real
situation of the operational state, we refine the state enabled. If a component is enabled, different alarms
having various degrees of severity could be sent as notifications. We classify alarms into three severity
levels: warning alarms, critical alarms, and outstanding alarms. The behavioral model of a system com-
ponent concerning these alarms is shown in Figure 1.
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Figure 1. State transitions diagram of the operational state change model
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2.2. Usage state change model

_

Usage state changes are internally decided by a system resource. Idle and busy states are well-defined
with respect to the behavior of the appropriate managed object. In many cases, the state active does not
accurately represent the real charge of a component, which is a relevant aspect in automatic reconfigura-
tion. Among probable causes of alarms we mention threshold crossed and storage-capacity problem
which refer to the usage capacity. Consequently, according to changes of its load, and with respect to
thresholdl and threshold2, die component is either in the warningActive state, or criticalActive state, as
shown in Figure 2. If a new user is served at the limit of the maximum capacity, or the maximum capacity
decreases, the usage state becomes busy.
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Figure 2. State transitions diagram of the usage state change model

2.3. Administrative state change model

The administrative state reflects the component state with respect to management decisions. For manag-
ing in a manual manner, the OSI proposal to describe the administrative state offers complete informa-
tion. Either a component is unlocked, which means that its services can be used by any system
component, or it is shutting-down, when only the current clients still access these services. For reconfigu-
ration purposes, the state locked suffices to ensure the liberty of administrative actions taken by a system
operator. However, procedures to create, initialize, insert, remove, migrate, or isolate a system component
are part of the system operator's expertise. In distributed systems which are managed by many system
operators, the operators' expertise frequently in conflict because a component may be locked with differ-
ent goals. Since the current administrative state change model does not cover the complexity required by
the automatic reconfiguration, we introduce three distinct phases concerning the administrative state:

phase 1: object creation, insertion, and initialization;
phase 2: current administration of an exiting object, as described by standards, and
phase 3: object removing, destruction, or migration.
In the phase 1, a managed object is prepared to administratively become available. We have identified

two states, isolated and initialized, which precede the state where object's services are available. As pre-
sented later, each managed object type has its required environment attributes. A managed object is first
created, and added to the system (or domain) as an isolated object, being in the state isolated. In this
phase, the required environment refers to the existential context. For example, a kernel needs memory
space, a type of processor, and an external memory, while a file needs memory. We consider that the man-
aged object is inserted in the system, but still isolated. Only its existential environmental requirements are
satisfied. It is registered within the appropriate MIB (Management Information Base), but not in the serv-
ice repository, because its services are not yet available.

If a managed object is already within a domain (i.e. its insertion has been performed), and its services
have to be used, the state becomes initialized. During this state, the operational environmental require-
ments are satisfied. Three activities are in particular performed by the management system in this state:
(1) management parameters are initialized, i.e. the operational state, usage state, and actual availability
are originally set, (2) objects conforming to the required types forming the operational environment are
identified and either reserved or connected to the given object, and (3) the new instance is registered
within the service repository of the concerned management domain, and if it is the first instance of a new
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type, i.e. no other instances of the same type exist within the concerned management domain, a special
managing object (commonly an extended trader) updates the service repository.

An object may be available, when all required cooperation relations corresponding to its required envi-
ronments are created. Cooperation relations represent object interactions through object interfaces [4].
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Figure 3. State transitions diagram of the administrative state change model

In the phase 2, when all of these actions have been performed, the managed object administratively
becomes available. If no other reconfiguration actions occur, this is a stable state, allowing to the poten-
tial clients to use services of the concerned managed object, according to its usage and operational states.
The model presents two sub-states, called in-passive-tests, and in-param-change. We recall, that the
object model we have considered presents multiple interfaces. The test interface is independent of the
functional interface. Consequently, several passive tests, can be applied, without disturbing the normal
services. For example, the evolution of the actual availability can be periodically tested. This state differ-
entiates those managed objects that are subject of particular management activities, such of test activities.
In the state in-passive-tests, the reconfigurator must create and monitor particular cooperation relations
concerning the tested and testing object. These cooperation relations are commonly initiated by the man-
aging system. The state in-param-changes has been introduced to clearly distinguish a state where the
properties are in the process of change. As an example, a node could be in this state during the reconfigu-
ration activity of removing one of its telecommunication interfaces. Although the node is still operation-
ally enabled, its usage state is active or possible criticalActive after this reconfiguration activity, the
number of interfaces changes. As a conclusion, the group of these three states, i.e., available, in-passive-
tests, and in-param-changes represents the lifecycle period where there are no administrative restrictions
to access services of the concerned managed object. Services are accessible strictly according to opera-
tional and usage states of a managed object.

From the state available, a managed object can transit to either the shutting-down, or locked states. In
our model, the semantics of these states is similar to that adopted by the OSI Management approach. The
administrative state becomes shutting-down when no other new users are administratively allowed to
access the services of the concerned managed object. Notice that there is no relation to a refusal due to the
usage state, if this state is busy. The state locked is reached from available, or shutting-down. The first
case is commonly used when the managed object must be actively tested, or for reconfiguration purposes
implying configuration changes within the system (see the next group of state values).

The state locked may serve either to apply several active tests, or purely the use of the concerned man-
aged object is prohibited. But differently to the state in-passive-tests, the managed object can not offer its
own services when it is in the in-active-tests state. If the test results are processed by special test analysers
viewed as managed objects, additional cooperation relations may be required, according to the required
environment of test analysers. From shutting-down or locked, a managed object may become available.
In all these three states, cooperation relations concerning the required environment of the related man-
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aged object are created and activated.
The last group of states (phase 3) concerns specific aspects useful for reconfiguration in distributed

systems. In the state inactive, the component related to the managed object is not available. All of its
cooperation relations, except the obligatory cooperation relations, are normal terminated, i.e. due to
reconfiguration actions, and services are not enabled. This is not the case of locked, where all previous
cooperation relations exist. While locked can be reached for different administrative goals, such as the
enhancement of system stability due to many alarms issued by the concerned managed object, the state
inactive represent a pre-state of a reconfiguration activity. Commonly, a managed object reaching this
state has necessarily had the shutting-down state, up to its usage state becomes idle. The main goal is to
reconfigure the managed object (isolate, remove, or migrate). Some external reconfiguration constraints
may revoke the initial decision, i.e. an alarm which announced an imminent failure of a node is cancelled
by the fault manager. Also, a reconfigurator which has inactivated a managed object for migrating it else-
where, may reconsider its decision; it can re-initialize this object, according to Phase 1.

The remaining three states are called isolated, in-migration, and destroyed. When a managed object is
inactive, all its functional cooperation relations are terminated, except the obligatory cooperation rela-
tions established with objects belonging to the existential required environment. Let us assume that the
managed object must be removed from the system. Consequently, the state destroyed is reached. In this
case, all obligatory cooperation relations corresponding to the operational required environment are ter-
minated. When the object is effectively destroyed, i.e., completely deleted from the system, even its
obligatory existential cooperation relations are terminated. A garbage collector effectively eliminates the
managed object from the system. From the isolated state, a managed object can enter the in-migration
state. This state is necessary to eventually prepare the migration services. A management system can
decide to remove or migrate a managed object, according to high-level reconfiguration decisions. When a
migration from a domain to another is decided, the state becomes in-migration. This state allows to tran-
sient domains to recognize the status of a temporary managed object. The reconfiguration can succeed or
fail; consequently, the managed object becomes isolated, either in the original domain (failure), or in the

y target domain (success). The state reached from in-migration is isolated.
The state management function ensures state transitions, as presented by the state change model dia-

gram. Once in a state, particular reconfiguration services fulfil additional activities concerning the state of
cooperation relations.

3. REQUIRED ENVIRONMENT

Each managed object has certain properties defined by its type, according to the relation is-instance-of.
_ At the instantiation, each type property is initialized according to the type definition. This definition must

clearly specify the types and the cardinality of the set of managed objects forming the required environ-
ment of each instance. However, it is possible that at the instantiation of a managed object, some objects
of its required environment do not exist. This has the following consequences:

1. If missing required objects belong to the test environment, the new object can not be tested;
2. If missing required objects belongs to the management environment, the new instance can not be au-

tomatically managed;
3. If missing required objects belongs to the existential environment, the new instance can not be cre-

ated;
4. If missing required objects belongs to the operational environment, the new instance can be created,

but it can not be in the operational state enabled.
Consequently, the existential environment represents hard constraints which are pre-conditions of the cre-
ation or the existence (after the creation of the concerned object), whereas the operational environment are
hard pre-conditions for the provision of services by the object in question. Obviously, if all these environ-
mental requests are satisfied, the new object can be created, tested, managed, and it provides its own ser-
vices. If, after the creation of an object, an interaction with one of its environmental objects can not be
maintained, e.g. an environmental object is destroyed, locked, or disabled, the operational or administra-
tive states of the previous object follow our models, according to the definition of environmental types. If
we consider the administrative state change model, the environments required for each administrative state
are presented in Figure 4. We observe that there are administrative states where only certain kinds of re-
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quired environment are necessary. For example, if the administrative state is isolated, only the require-
ments for the existential environment remain.
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Figure 4. Required environment in different administrative states

Note:
According to these environment types, the interaction between this new instance and any object is called test, man-
agement, existential, and operational, respectively. It is not sufficient that the objects of the object's environment
exist, but also, the cooperation relations between this object and its environmental objects must be accordingly cre-
ated. Also, the state of these cooperation relations must allow the requested services. Also, objects playing roles
within required environments of a concerned managed object may have different operational, usage or administra-
tive states. Hence, it is not guaranteed that the environmental needs will be effectively satisfied. This leads to con-
sider the cooperation relations and environmental objects together. Several conditions must be accomplished in
order to create the environmental satisfaction of a managed object, and to maintain it, as presented in [5].

4. ACTUAL AVAILABILITY

The actual availability of a system component at time t, written a(t), represents the availability of the com-
ponent's services up to the given time. Its value, defined by formula (I), represents the fraction of time this
component has been in the operational state enabled after an event, called start-period, occurred. As
shown by formula (I), the actual availability value is a continuous function of time, defined as a quotient
between the amount of time where the resource has been in the enabled state (commonly called operational
time) and the observation period (between the time to and the time t of the end of the observation period).

T = [to. °° ], k> Is the timestamp where the measuring period begins

a: T -> [0,1.0] • ; • ; ; : : . ' • • : : : : •: - i ^ • ; : : ̂  v . ,•;;;: , I ; 11 :•
(I)

a(t) = ~7- I Mi) d t, where 'X (t) = { J J
if operational state at time t is enabled, and
otherwise

For management purposes, this formula must be evaluated at any time t e T. However, polling responses
and notifications are issued at specific times t^ e T. We assume that each state change event is represented
by <event type, timestamp>, where timestamp is the time when the state change occurred (notification),
or a polling request has been issued (management command).
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_

a(t) = -~- (a (q) x (t r to)+ a.(t-) x (t - tj)) (II)

where tj is the time of the last state change before the time t, and

t^ means just before t. ; :

The actual availability is calculated each time an state change event occurs, or on-demand at the initi-
ative of managing objects, i.e. between two state changes, using the formula II above. This formula allows
us to compute the actual availability a(t), by knowing the actual availability a(tj) at the time ti of the last
computation. Based on formula (II), a management system will calculate the actual availability value each
time a state change event occurs or a polling action is performed. Whereas this case is natural, a preventive
computation by polling can be performed by the management system before a new state change event oc-
curs. This case is frequently used with two goals. First, for the preventive control, a management system
updates the actual availability regardless whether a state change occurred. Second, if a critical customer
requests services offered by a system resource, the management system must evaluate the actual availabil-
ity of the provider in order to choose the best solution. To accurately adapt reconfiguration policies to the
real state of a component, other derived parameters may be considered [6] [8].

5. MANAGEMENT POLICIES

5.1. Monitoring policies

Monitoring policies may independently use criteria based either on the actual availability, operational
state, or usage state. Let us consider the polling operation performed by a manager with a variable frequen-
cy to collect the real state of a managed object. This frequency is increased when the concerned component
behaves abnormally, in order to capture new information in order to prevent a degradation [7]. A simple
monitoring policy based on the actual availability can be expressed by the policy PI:
PI: ifa(t)<ao

then
pollingFrequency = f (a(t))

else
pollingFrequency = f0

where a0 is a threshold of the actual availability defined by the management system for those system com-
ponents playing critical roles for particular applications, f"o is a basic polling frequency, and f(a(t)) is an
updated polling frequency according to the actual availability. When the actual availability decreases, the
polling frequency is increased to capture possible degradation of QoS offered by the appropriate compo-
nent. Policy P2 presents another combination between the notions defined in this paper.
P2: if operationalState = warningEnabled,

and
usageState = criticalActive

then
pollingFrequency = max {f (a(t)), g(usState)} [7]

5.2. Selecting the most available server

Commonly, establishing cooperation relations implies many kinds of constraints, expressing the re-
quested QoS or the current state of the system resources which must interact. In distributed systems, iden-
tical or similar services can be offered by many resources. Mainly, QoS issues concerning static properties
of potential cooperating resources, offered as interface constraints by their appropriate managed objects,
have been presented in [8]. In the following, we emphasize QoS constraints related to the real performance
of cooperating objects. The problem is, how to select the most available server for a client, based on the
actual measures and models proposed in this article. We define several relations for comparing different
system components, from the management point of view, with respect to their current availabilities, oper-
ational and usage state values. We write "Cl >~ C2" (read Cl is-better-than C2) to indicate that Cl is in
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some sense better than C2. Clearly, we can order the operational and usage state values as follows:
enabled >• wamingEnabled »• criticalEnabled >• disabled;
idle >• active >• warningActive >• criticalActive >• busy.
We define the health of a component C with respect to its weighted current availability and its opera-

tional state, as hc(t) = < opState, a(t)>c. We then can define several decision policies, for comparing sys-
tem components, based on their health and usage state as follows:

The management policy operational-state-first, can be defined as:
hcl(t) >- hC2(t) iff ((opStateci *" opStateC2) v ((aci(t) > ac2(t)) A (opStatecl = opState C2))»

while the management policy current-availability-first considers
hc](t) >• hC2(t) iff (ici(t) > Ic2(t)) v ((ad(t) = ic2(t)) A (opStatecl >• opStatec2)).
The QoS is directly dependent of the loading for many types of servers. Consequently, we use the tuple

<health, usState>c, to represent the QoS offered by a given component C. The following management
policies may be used to compare the QoS of different components.

The health-first policy considers that:
Cl >• C2 iff ((hci(t) >- hC2(t)) v ((hcl(t) = hC2(t)) A (usStatecl >- usStateC2)),

while the usState-first policy considers that:
Cl >• C2 iff (usStatecl >- usStateC2) v ((usStatecl = usStateC2) A (aci(t) >• ac2(t)))

6. CONCLUSIONS

In our proposal, we have introduced the definitions of three elements which facilitate automatic reconfig-
uration management: (i) new state change models for managed objects, (ii) the actual availability, and
(iii) the required environment for a managed object, distinguishing the functional, operational, and exis-
tential environment of a managed object, as well as its management and test environments. Based on
these proposals, we have defined several monitoring and server selection policies, commonly used to col-
lect data and reconfigure distributed systems. Ongoing works use this approach to formalize reconfigura-
tion activities in distributed systems.
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